Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Res ; 95(12): 2357-2366, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28573671

RESUMO

To grasp the molecular mechanisms and pathophysiology underlying epilepsy development (epileptogenesis) and epilepsy itself, it is important to understand the gene expression changes that occur during these phases. Quantitative real-time polymerase chain reaction (qPCR) is a technique that rapidly and accurately determines gene expression changes. It is crucial, however, that stable reference genes are selected for each experimental condition to ensure that accurate values are obtained for genes of interest. If reference genes are unstably expressed, this can lead to inaccurate data and erroneous conclusions. To date, epilepsy studies have used mostly single, nonvalidated reference genes. This is the first study to systematically evaluate reference genes in male Sprague-Dawley rat models of epilepsy. We assessed 15 potential reference genes in hippocampal tissue obtained from 2 different models during epileptogenesis, 1 model during chronic epilepsy, and a model of noninjurious seizures. Reference gene ranking varied between models and also differed between epileptogenesis and chronic epilepsy time points. There was also some variance between the four mathematical models used to rank reference genes. Notably, we found novel reference genes to be more stably expressed than those most often used in experimental epilepsy studies. The consequence of these findings is that reference genes suitable for one epilepsy model may not be appropriate for others and that reference genes can change over time. It is, therefore, critically important to validate potential reference genes before using them as normalizing factors in expression analysis in order to ensure accurate, valid results.


Assuntos
Epilepsia/genética , Perfilação da Expressão Gênica/normas , Animais , Masculino , Ratos , Ratos Sprague-Dawley
2.
Epilepsia ; 58(2): 222-230, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28157273

RESUMO

OBJECTIVE: Kainic acid (KA) is a potent glutamate analog that is used to induce neurodegeneration and model temporal lobe epilepsy (TLE) in rodents. KA reliably induces severe, prolonged seizures, that is, convulsive status epilepticus (cSE), which is typically fatal without pharmacologic intervention. Although the use of KA to model human epilepsy has proven unquestionably valuable for >30 years, significant variability and mortality continue to confound results. These issues are probably the consequence of cSE, an all-or-nothing response that is inherently capricious and uncontrollable. The relevance of cSE to the human condition is dubious, however, as most patients with epilepsy never experienced it. We sought to develop a simple, KA-based animal model of TLE that avoids cSE and its confounds. METHODS: Adult, male Sprague-Dawley rats received coincident subcutaneous injections of KA (5 mg) and lorazepam (0.25 mg), approximately 15.0 and 0.75 mg/kg, respectively. Continuous video-electroencephalography (EEG) was used to monitor acute seizure activity and detect spontaneous seizures. Immunocytochemistry, Fluoro-Jade B staining, and Timm staining were used to characterize both acute and chronic neuropathology. RESULTS: Acutely, focal hippocampal seizures were induced, which began after about 30 min and were self-terminating after a few hours. Widespread hippocampal neurodegeneration was detected after 4 days. Spontaneous, focal hippocampal seizures began after an average of 12 days in all animals. Classic hippocampal sclerosis and mossy fiber sprouting characterized the long-term neuropathology. Morbidity and mortality rates were both 0%. SIGNIFICANCE: We show here that the effects of systemic KA can be limited to the hippocampus simply with coadministration of a benzodiazepine at a low dose. This means that lorazepam can block convulsive seizures without truly stopping seizure activity. This novel, cSE-free animal model reliably mimics the defining characteristics of acquired mesial TLE: hippocampal sclerosis and spontaneous hippocampal-onset seizures after a prolonged seizure-free period, without significant morbidity, mortality, or nonresponders.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Agonistas de Aminoácidos Excitatórios/toxicidade , Ácido Caínico/toxicidade , Lorazepam/uso terapêutico , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletroencefalografia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Ácido Caínico/administração & dosagem , Masculino , Fibras Musgosas Hipocampais/patologia , Doenças Neurodegenerativas/etiologia , Ratos , Ratos Sprague-Dawley , Esclerose/etiologia , Gravação em Vídeo
3.
Neuropharmacology ; 99: 510-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26300300

RESUMO

We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Núcleo Accumbens/enzimologia , Recompensa , Comportamento Social , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Imunofluorescência , Masculino , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Núcleo Accumbens/efeitos dos fármacos , Testes Psicológicos , Distribuição Aleatória , Ratos Sprague-Dawley , Receptores de Dopamina D2/metabolismo , Comportamento Espacial/efeitos dos fármacos , Comportamento Espacial/fisiologia , Estresse Psicológico/enzimologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...